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SUMMARY

A three-dimensional, non-hydrostatic pressure, numerical model with k–� equations for small amplitude
free surface �ows is presented. By decomposing the pressure into hydrostatic and non-hydrostatic parts,
the numerical model uses an integrated time step with two fractional steps. In the �rst fractional step the
momentum equations are solved without the non-hydrostatic pressure term, using Newton’s method in
conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved
implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian
matrix itself, limiting the amount of storage and signi�cantly decreasing the overall computational time
required. In the second step the pressure–Poisson equation is solved iteratively with a preconditioned
linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time
dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements,
transformed velocities are de�ned at cell faces by interpolating velocities at grid nodes. After the new
pressure �eld is obtained, the intermediate velocities, which are calculated from the previous fractional
step, are updated. The newly developed model is veri�ed against analytical solutions, published results,
and experimental data, with excellent agreement. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: non-hydrostatic pressure; Newton–GMRES; preconditioned GMRES; free surface
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1. INTRODUCTION

Over the past two decades, three-dimensional (3-D) models, using the hydrostatic pressure
approximation [1, 2], have been developed extensively. If this approximation is assumed, the
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vertical momentum equation is omitted and the vertical velocity is calculated from the conti-
nuity equation. Such numerical models can be applied to many shallow water �ows. However,
in some �ows in which the ratio of the wave length to the depth is small, this approximation
is inaccurate. More recently, as computer power has increased dramatically, a few numerical
models have considered the non-hydrostatic pressure by means of solving a pressure related
Poisson equation. The numerical techniques for the pressure–Poisson equation are usually
either the semi-implicit method for the pressure-linked equation (SIMPLE)-family methods
(SIMPLE, [3]; SIMPLER, [4]; SIMPLEC, [5]) or fractional step methods [6–10]. The SIM-
PLE methods need multiple iterations per time step until the initially guessed pressure �eld
has converged. Alternatively a fractional step method can be employed by separating the
pressure into hydrostatic and non-hydrostatic parts, and using time marching computations.
In most non-hydrostatic models for free surface �ows [6–9], only parts of the equations are

treated implicitly, and then the resulting matrix can be inverted inexpensively. For example,
the water surface elevation and the vertical di�usion terms in the momentum equations are
discretized implicitly by Casulli [6]. In this way, the velocity �eld is obtained by inverting a
tri-diagonal matrix after the water surface elevation is determined.
In this study, most terms are solved implicitly using Newton’s method with an almost

matrix-free methodology. For maximum �exibility in the representation of the computational
domain, the governing equations are solved in a generalized coordinate system.

2. MATHEMATICAL FORMULATION

The 3-D Navier–Stokes equations with the Boussinesq approximation can be written in con-
servation form as
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Figure 1. Transformation from Cartesian (x; y; z) to generalized (�; �; �) coordinates.

where u(x; y; z; t), v(x; y; z; t), and w(x; y; z; t) are mean velocity components in the Cartesian
x-, y-, and z-coordinates, respectively, t is time, P(x; y; z; t) is pressure, �T(x; y; z; t) is turbulent
eddy viscosity, � is density, assumed to be constant, and g is gravitational acceleration.
For a free surface problem, the continuity equation (1) is integrated from the bottom zb(x; y)

to the surface H (x; y; t)= h(x; y; t)+zb(x; y) (Figure 1), which yields the free surface equation
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where u(x; y; t) and v(x; y; t) are depth averaged velocities, given by

u=
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zb

u dz and v=
∫ H
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v dz (4)

In many hydrostatic models [1, 2], it is assumed that the pressure varies depending on the
amount of water above a point, so that it is a function of water surface elevation only, leading
to the hydrostatic approximation [11]. However, in this model the pressure is decomposed into
hydrostatic and non-hydrostatic (or hydrodynamic) parts [8] resulting in

P=�g(H − z) + q (5)

where q(x; y; z; t) is the non-hydrostatic pressure.
In order to overcome di�culties arising from free surface movement, the �-coordinate

system [12] has been used widely. In this research we use a similar approach, applying a
generalized coordinate transformation from (x; y; z; t) to (�; �; �; �) (see Figure 1). Using the
approximation (5), the governing equations (1)–(2) are transformed to
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where

U = �xu+ �yv+ �zw; V = �xu+ �yv+ �zw and W = �xu+ �yv+ �zw (8a)

are the transformed velocities, J is the Jacobian of the coordinate transformation
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represent the hydrostatic and non-hydrostatic pressure terms, respectively, and �nally, the
viscous terms are given by
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Note that only the vertical grid changes with time, so that �t and �t do not appear in
(7)–(8).
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For turbulence modelling, the standard k–� equations [13] are used. These can be written
in vector form as
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k(x; y; z; t) is the turbulent kinetic energy (TKE), �(x; y; z; t) is the TKE dissipation rate and
P is the turbulence production. After solving (9)–(10), the turbulent eddy viscosity is deter-
mined using

�T = c	
k2

�
(11)

The turbulence constants have been found to be c	=0:09, c1�=1:44, c2�=1:92, �k =1:0,
and ��=1:3 [13].
The surface water equation (3) is transformed into
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where U = �xu+ �yv, and V = �xu+ �yv.

3. NUMERICAL APPROXIMATION

In the numerical approximation of Equations (6)–(9), all variables except the transformed
velocities are de�ned at grid nodes. The transformed velocities are assigned between nodes (see
Figure 2) to yield a grid arrangement similar to that used in References [10, 14], in order
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Figure 2. Grid transformation and de�nition of the transformed velocities.

to prevent a possible checkerboard pressure �eld [4] at collocated grid points. In Figure 2, i
and k denote grid points in the �- and �-directions with grid spacings �� and ��, respectively.
Variations in the �-direction are represented by the j index with grid spacing ��.

3.1. Spatial discretization

The symmetric total variation diminishing (TVD) method [15] is used to approximate the
inviscid �uxes numerically. By applying this technique, rapid changes in the �ow �elds can
be captured using a three-point stencil in one direction. We de�ne the numerical �uxes at cell
faces as
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2 |Ui+1=2; j; k |(1− 
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where �Qi+1=2; j; k =Qi+1; j; k −Qi; j; k , and 
i+1=2; j; k is obtained by using the minmod limiter
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and the minmod function is de�ned as
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x for |x|6 |y|
y for |x|¿ |y|

(14c)

Since the Cartesian velocities are de�ned at grid nodes, U at cell faces is interpolated using
these Cartesian velocities. Several interpolation techniques are discussed in Section 3.3.2.
A similar approximation is applied for the �- and �-directional �uxes F and G.
For the hydrostatic and non-hydrostatic pressure terms of (8c) in (7), a second-order central

approximation is used.
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If the viscous terms @Ev
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3.2. GMRES method

When a linear system of equations, represented by

Ax= b (16)

is solved, the generalized minimal residual (GMRES) method [16] constructs an orthonormal
basis of the Krylov subspace, K	, which is de�ned by

K	=span{r(0);Ar(0); : : : ;A(	−1)r(0)} (17)

where r(0) = b −Ax(0) is the residual after using an initial guess x(0), A is the coe�cient, or
Jacobian, matrix, and 	 is the number of iterations. An approximate solution is found using

x(	) =x(0) + z(	) with z(	) ∈K	 (18)

where z(	) is the global minimum of r(	). Using this method, matrices can be inverted whether
or not they are symmetric and=or positive de�nite. However, one of the major limiting aspects
of this method is that it can be very slow as the number of iterations increases. To remedy
this problem, a modi�ed form uses r(0) = r(	) and x(0) =x(	), denoted by GMRES(	) [16].
Moreover, the use of a preconditioning matrix can improve the convergence rate [17]. In this
study, however, GMRES(20) is used without preconditioning because convergent solutions
are obtained within ten iterations in most cases.

3.3. Time integration

The governing equations are solved using two fractional steps involving hydrostatic and
non-hydrostatic pressure, respectively. In the �rst step, intermediate velocities are estimated
using the hydrostatic pressure (and omitting the non-hydrostatic pressure) in the momentum
equation (7). In the second step, updated velocities are determined by incorporating the non-
hydrostatic pressure.

3.3.1. Hydrostatic step. After dropping the non-hydrostatic pressure terms, (7) can be written
as
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where F is the function representing the momentum equations to be solved, and Q̃, etc.
denote intermediate solutions which are to be modi�ed in the second step by solving for the
non-hydrostatic pressure. Substituting (13) and (15) into (19) yields
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Q̃−Qn
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where n denotes the time level, �� is the time step, and � represents the second-order dis-
cretization of (15), to reduce complexity. We also introduce �, which controls implicitness
and produces the second-order Crank–Nicolson type formula for �=0:5, and the �rst-order
backward Euler method for �=1. Throughout our applications �=0:5 has been used. The
hydrostatic term Ph is an indirect function of Q, and is updated after calculating h from
the water surface equation (12); h is updated so that the new water surface can be auto-
matically obtained after the Newton iteration step has converged. By doing this, the surface
water equation (12) can be strongly coupled with the momentum equations (7). Introducing
a sub-iteration index m for the Newton iterations, (20) can be written as

B(Q̃m+1 − Q̃m)= − F(Q̃m;Qn) (21)

where B= @F=@Q̃m. Equation (21) is iterated until |Q̃m+1− Q̃m| → 0, F → 0, or Rm(= − B
(Q̃m+1 − Q̃m)− F)→ 0, after which the time step increases from n to n+ 1.
The GMRES method does not use the matrix B explicitly, but needs only a product of the

matrix and a vector (thereby requiring signi�cantly less computer storage). This product can
be replaced by the relationship [18]

Bv=
F(Q̃+ �v)− F(Q̃)

�
(22)
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where v is the vector being multiplied, and � is a carefully chosen small positive parameter.
Complicated formulae have been developed for � [19], but

�=
√
�

‖v‖2 (23)

is a simple expression that provides satisfactory accuracy [20], where ‖v‖2 denotes the
Euclidean norm of the vector v, and �=10−14 [20] is used for double precision calcula-
tions. If F(Q̃) is calculated and stored during the previous iteration, (22) needs only one
function evaluation. Higher-order di�erence quotients can be introduced at the expense of
more function evaluations [21]. However (22) does not a�ect the ability to obtain convergent
solutions using double precision computations [20].
Even after Q̃=[ũ; ṽ; w̃]T=J is obtained, these new, intermediate, velocities may not satisfy

the continuity equation. Thus, to develop a divergence-free velocity �eld, the non-hydrostatic
pressure is determined using the continuity equation (6) in the second fractional step. If the
hydrostatic pressure approximation is used, the �-component of the momentum equation (7)
is ignored and the vertical velocity w is obtained by solving the continuity equation (6) and
applying (8a).

3.3.2. Non-hydrostatic step. In this step, updated velocities are calculated by considering the
non-hydrostatic pressure term, which results in

Qn+1 = Q̃+��Pd (24)

which can be expanded in component form as
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The relationship between the normal velocities and the non-hydrostatic pressure can be
obtained by substituting (25) into (8a), leading to

Un+1 = Ũ − ��
�
[(∇� · ∇�)q� + (∇� · ∇�)q� + (∇� · ∇�)q�]

Vn+1 = Ṽ − ��
�
[(∇� · ∇�)q� + (∇� · ∇�)q� + (∇� · ∇�)q�]

Wn+1 = W̃ − ��
�
[(∇� · ∇�)q� + (∇� · ∇�)q� + (∇� · ∇�)q�]

(26)

where Ũ , Ṽ , and W̃ are the intermediate transformed velocities at the cell faces. Since u, v,
and w are de�ned at the cell centre, interpolation is needed. In this study, three interpolation
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techniques are examined. Two of these techniques (two-point linear interpolation and a third-
order method [22]) interpolate velocities using variables in the same direction and are thus
referred to as single-dimensional interpolation techniques. The third-order method uses the
minmod function of the central di�erence of second-order derivatives. For uniform grids, this
third-order method can be written as

Ui+1=2; j; k =Ui; j; k + 1
2(Ui+1; j; k −Ui; j; k)− 1

2minmod(ci; j; k ; ci+1; j; k) (27a)

where the minmod function is de�ned in (14c) and

ci; j; k =Ui+1; j; k − 2Ui; j; k +Ui−1; j; k (27b)

The third interpolation method averages velocities over three-dimensional space using

Ui+1=2; j; k = 1
6(Ui; j; k +Ui+1; j; k +Ue +Uw +Ut +Ub) (28a)

where the multi-dimensionally interpolated velocities are

Ue = 1
4(Ui; j; k +Ui+1; j; k +Ui; j+1; k +Ui+1; j+1; k)

Uw = 1
4(Ui; j; k +Ui+1; j; k +Ui; j−1; k +Ui+1; j−1; k)

Ut = 1
4(Ui; j; k +Ui+1; j; k +Ui; j; k+1 +Ui+1; j; k+1)

Ub = 1
4(Ui; j; k +Ui+1; j; k +Ui; j; k−1 +Ui+1; j; k−1)

(28b)

After substituting (26) into (6), the pressure–Poisson equation is obtained. After approx-
imating the second-order derivatives, this elliptic equation yields a 19-diagonal matrix that
only contains grid transformation relationships. Listed in the Appendix are the full (A1) and
discrete (A2) pressure–Poisson equations. When the water surface changes, the grid transfor-
mation relationship varies, even if uniform horizontal grids are used, so that the coe�cient
matrix is not symmetric. For this reason, the linear system of equations cannot be solved by
the conjugate gradient method. However, a diagonally dominant matrix is always produced,
so that convergence using iterative methods is guaranteed. A linear version of the GMRES
method is used with preconditioning. The linear system (16) with the right preconditioning
matrix is

AM−1x∗= b with x∗=Mx (29)

whereM is the preconditioner, which should approximate A. The preconditioned matrix AM−1

has a smaller spectral radius than A, so that extra computation will be compensated for by a
faster convergence rate. When A is expressed as the sum of diagonal (D̂), strictly lower (Ê),
and strictly upper (F̂) matrices, it can be factorized as

A= Ê+ D̂+ F̂=(ÊD̂−1 + I)(D̂+ F̂)− E=LU − E (30)

where E= ÊD̂−1F̂ is the error in the above factorization, and L and U are, respectively, lower
and upper triangular matrices that can be inverted easily by forward and backward substitution.
If the LU matrix is used as a preconditioner (the symmetric Gauss–Seidel (SGS) method),
the factorization error is ignored. In 3-D problems, storing the coe�cient and preconditioning
matrices may require signi�cant capacity. Therefore only non-zero elements are stored, using
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the compressed sparse row (CSR) format [23]. The e�ectiveness of using this preconditioning
matrix is discussed in Section 4.1.
After solving the linear system for the non-hydrostatic pressure, the new velocity �eld,

which will be divergence-free, is easily obtained from (25). Using this divergence-free velocity
�eld, the standard k–� equations (9) are solved with a similar numerical method as used for
the momentum equations (7). The surface water equation (12), solved explicitly after de�ning
velocities at cell faces using a 2-D version of (28a), is then solved once more, to account for
the e�ect of the non-hydrostatic pressure.

3.4. Solution procedure

The overall solution procedure is summarized as follows:

(i) Obtain the intermediate velocity �eld using Newton’s method, leading to values for the
water surface elevation.

(ii) Interpolate cell-centred velocities to obtain cell-faced values, and solve the new non-
hydrostatic pressure �eld.

(iii) Update the intermediate velocities using (25) to obtain the divergence-free velocity �eld.
(iv) Calculate k and � using the velocities obtained from step (iii).
(v) Calculate the new water surface elevation to account for the non-hydrostatic pressure

e�ect, and update the grid variables.

3.5. Boundary conditions

For the non-hydrostatic pressure at wall and open boundaries, a zero normal velocity condition
is used rather than specifying the non-hydrostatic pressure. For instance, an impermeable
velocity condition is imposed at a wall (i=1), so that U−1=2; j; k = − U1=2; j; k [10]. Because
of the cross-derivatives, pressures outside the boundaries still need to be speci�ed even after
applying this velocity condition. This is performed by a locally one-dimensional second-order
extrapolation. At the free surface, the non-hydrostatic pressure is set to zero. Details of in�ow
boundary conditions are described for each application.
To avoid the requirement of a large number of small grid elements to adequately represent

the rapid variation of �ow variables near model walls and bottom, a wall function is applied
at these boundaries. Using this method, boundary conditions are speci�ed at the �rst grid point
from the wall rather than at the boundary itself. The velocity normal to each wall is set to
zero while the two tangential velocities are determined using a method similar to Stansby [8],
which is based on the standard formulae for open channel �ows [24] given by

u1
u∗
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1


ln
(
30z1
ks

)
for rough walls

1


ln
(
9:05u∗z1

�

)
for smooth walls

(31)

where u1 is the velocity parallel to the boundary, which is calculated from the momentum
equations (7) at z1, z1 is the normal distance of the �rst grid point from the boundary, u∗ is
the shear velocity, which is related to the bottom shear stress, �w, as u∗=

√
�w=�; 
=0:41 is

the von Karman constant; ks is the roughness height, and � is the kinematic viscosity. Using
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this shear velocity u∗, boundary conditions for k and � at the wall [13] are

k=
u2∗√c	 and �=

|u3∗|

z1

(32)

At the free surface, without wind stress, k and � are obtained [13] from

@k
@z
=0 and �=

(k√c	)1:5
0:07
h

(33)

3.6. Grid generation

In this paper, horizontal grids are distributed equally depending on the geometrical boundaries.
When inviscid �ow or constant eddy viscosity is assumed, the water depth is also divided
using an equally spaced vertical grid. For turbulent calculations, however, concentration of
vertical grid points near the bottom and surface boundaries is achieved using a grid clustering
method similar to that of Ho�mann and Chiang [25], by applying

�= �1 + (1− �1) ln[{�2 + (2�1 + 1)(z − zb)=h− 2�1}={�2 − (2�1 + 1)(z − zb)=h+ 2�1}]
ln[(�2 + 1)=(�2 − 1)] (34)

with �1 and �2 to control clustering location and density. The inverse of (34) is given by

z= zb + h
(2�1 + �2){(�2 + 1)=(�2 − 1)}(�−�1)=(1−�1) + 2�1 − �2
(2�1 + 1)[1 + {(�2 + 1)=(�2 − 1)}(�−�1)=(1−�1)] (35)

4. MODEL VALIDATION

In this section, four test cases are examined to verify the numerical model against analytical
solutions, published results, and experimental data. These four test cases include inviscid
�ow of a standing wave in a closed basin (Section 4.1), wind driven circulation with a
constant turbulent eddy viscosity (Section 4.2), and two cases involving turbulence in a trench
channel (Section 4.3) and a meandering channel (Section 4.4).

4.1. Standing wave in a closed basin

This is one of the most widely used test cases to verify non-hydrostatic pressure models [6, 26]
since, by choosing a relatively small wave length � compared to the depth, the hydrostatic
approximation is no longer valid. For comparison purposes, inviscid �ow is assumed. For the
initial condition, all velocities are set to zero and the water surface elevation is given by

H (x)= �0 cos
(
2�
�
x
)
+ h0 with 06 x6 l (36)

where �0 = 0:1m is the amplitude; �=2l is the wave length; l=10m is the domain of the
square basin, and h0 = 10m is the undisturbed water depth. A zero Neumann condition is
used for all three velocities at the wall boundaries, while a free slip condition is applied at
the free surface.
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Figure 3. Convergence of three iterative methods, for the standing wave in a closed basin test case:
(a) number of iterations against residual (Pa); and (b) processor time (s) against residual (Pa).

Based on small amplitude wave theory [27], the wave celerity c is approximated by

c=

√
g�
2�
tanh

(
2�
�
h0

)
(37)

which is equivalent to c=5:57m=s so that the wave period T is 3:59 (s). Using the hydro-
static pressure approximation, however, the wave celerity is given by c=

√
gh0 = 9:90m=s

and T =2:02 s. Therefore, the sloshing wave of the hydrostatic model will propagate with a
faster speed than that of the non-hydrostatic model.
The computational domain uses a constant grid spacing of 0:5m in the horizontal directions,

with 20 layers in the �-direction equally divided. A small time step of ��=0:001 s is used
to obtain highly accurate solutions.
We examine the convergence rate of the pressure–Poisson equation using three iterative

methods: the Gauss–Seidel (GS) method and the GMRES(20) method with and without
SGS preconditioning. In Figure 3, the y-axis represents the Euclidean norm of the resid-
ual (r= b − Ax) in Pascals (Pa), plotted against the number of iterations and the proces-
sor time in seconds (s) measured using a Pentium III 700MHz PC with 256MB RAM.
As expected, the GS method converges most slowly, and cannot reduce the residual norm
below 10−10. The GMRES method without preconditioning is an improvement over the
GS method. However, when it is used with the SGS, the number of iterations is reduced
dramatically (Figure 3(a)). Even though extra calculations are needed for the preconditioning
matrix, the overall performance is the best using GMRES + SGS (Figure 3(b)).
Before comparing the numerical solutions against analytical solutions, we examine the

velocity interpolation methods. In general it has been found that the linear interpolation tech-
nique performs similarly to the third-order method. Because of this, only computed pressure
�elds of the third-order and the multi-dimensional methods have been compared, and are
shown in Figure 4 at y=5m and time t=T=2 s. Note the oscillations in the pressure �eld
produced by the third-order interpolation, not observed when the multi-dimensional scheme is
applied.
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Figure 4. Non-hydrostatic pressure (dashed iso-lines at 50 Pa intervals) at y=5m and t=T=2 s,
using two velocity interpolation schemes, for the standing wave in a closed basin test case:
(a) using third-order velocity interpolation; and (b) using multi-dimensional velocity interpolation.
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Figure 5. Analytical (◦) and numerical (−) water surface elevations (m), at (x; y)= (0; 5)m using the
hydrostatic and non-hydrostatic pressure models, for the standing wave in a closed basin test case:
(a) hydrostatic pressure models (analytic [7]); and (b) non-hydrostatic pressure models (analytic [27]).

In Figure 5, we present the time history of the water surface elevation h calculated with
and without the hydrostatic pressure approximation, at (x; y)= (0; 5)m. Excellent agreement
is observed between each analytical solution and its corresponding numerical model. This
is despite the fact that, due to the small ratio of the wave length to the depth, the hydro-
static pressure approximation is not valid, and so that the solution with this approximation
(Figure 5(b)) is not physically appropriate. Note that the wave periods di�er in the two cases
because of the di�erences in the wave celerity.
Figure 6 shows the calculated velocity �elds, with and without the hydrostatic pressure

approximation, at y=5m and time t=T=4 s. The most signi�cant di�erence is that the
hydrostatic model (Figure 6(a)) calculates much larger vertical velocities near the walls than
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Figure 6. Numerical velocity (m=s) vectors at y=5m and t=T=4 s, using the hydrostatic and
non-hydrostatic pressure models, for the standing wave in a closed basin test case: (a) hydrostatic

pressure model; and (b) non-hydrostatic pressure model.

the non-hydrostatic model (Figure 6(b)). This is because, with the hydrostatic approximation,
these velocities are calculated by solving the continuity equation, so that they are only a
function of the horizontal velocity �eld. The results from the hydrostatic model suggest that
velocity variations over depth, especially near x=5m, are almost negligible; this is consistent
with the shallow water approximation.
The velocity and non-hydrostatic pressure �elds, at times T=8 s and 5T=8 s, of the numerical

solutions are compared with those of the analytical solutions [27] in Figure 7. For t=T=8 s, the
water surface is dropping to the equilibrium position on the left and rising on the right; nega-
tive pressure is shown on the left-hand side, while the opposite situation occurs for t=5T=8 s.
Excellent agreement between these results is clearly indicated.

4.2. Wind driven circulation

In this test case, we solve the problem presented in Reference [7] using the same closed basin
with a depth of 5m and a constant wind speed of 10m=s in the x-direction. All boundary
conditions are identical to the previous test case, except at the free surface where a wind
shear is applied using the empirical formulae

��T
@u
@z
=�acfuw|uw| and ��T

@v
@z
=�acfvw|vw| (38)

where �a is the density of air; uw (=10m=s) and vw (=0m=s) are wind speeds in the x- and
y-directions, respectively, and cf is the drag coe�cient. It is assumed that �T =0:001m2=s and
�a = 1:20 kg=m3, and that cf=1:5× 10−3 [28]. Computational results are shown in Figure 8
at y=5m and t=1000 s. Even though the hydrostatic pressure model (Figure 8(a)) predicts
strong vertical �ows near the vertical walls, circulation is observed in the entire basin, while
Jankowski’s [7] results show strong vertical circulation near the walls only. However, much
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Figure 7. Velocity (m=s) vectors and non-hydrostatic pressure (dashed iso-lines at 50 Pa intervals)
at y=5m from the analytical [27] and numerical solutions at times T=8 s and 5T=8 s, respectively, for
the standing wave in a closed basin test case: (a) numerical, at t=T=8 s; (b) analytical, at t=T=8 s;

(c) numerical, at t=5T=8 s; and (d) analytical, at t=5T=8 s.

smoother and more fully developed circulation is obtained in the present non-hydrostatic
(Figure 8(a)) and Jankowski [7] models.

4.3. Trench channel �ow

In this test case, numerical solutions with the standard k–� turbulence model are compared
with experimental data obtained by van Rijn [29] in a channel 17m long by 0:5m wide with
0:7m high side walls. Similar numerical experiments have been conducted by a number of
authors, including Alfrink and van Rijn [30] and Stansby and Zhou [9] without and with a
rigid lid approximation, respectively.
The computational domain uses an equally spaced grid of 0:05m in the longitudinal and

lateral directions, with 30 vertical layers using �1 = 0:5 and �2 = 1:05 in (35). To reduce
computational requirements, only 2:8m is considered in the horizontal (x) direction around
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Figure 8. Velocity (m=s) vectors at y=5m and t=1000 s, for the wind driven circulation test case:
(a) hydrostatic pressure model; and (b) non-hydrostatic pressure model.

Figure 9. Cross-section through centreline at y=0:25m, with measurement sections and grid distribution
of the trench channel �ow test case geometry.

the trench. Figure 9 shows a cross-sectional view of the grid distribution along the centre line
at y=0:25m. In this �gure, �ve locations indicate where measured data [29] are available. For
both the hydrostatic and non-hydrostatic models, a time step of ��=0:01 s is used. Residuals
showed that steady state solutions were achieved after t=50 s simulation time.
At the left-hand (in�ow) boundary, the u velocity is de�ned using the rough wall condition

in (31), and k and � are speci�ed using (32) with u∗=0:03m=s [9], while the other velocities
are set to zero. At the right-hand (out�ow) boundary, the water surface elevation H is speci�ed
as 0:4m, and other independent valuables are described using the zero �ux derivatives with
respect to the normal direction of the out�ow boundary. Along the side walls u, w, k, and �
satisfy the zero �ux condition across the wall, while v is zero.
Streamlines computed from the hydrostatic and non-hydrostatic models are compared in

Figure 10. Results from these models are very similar, but a slightly smoother circulation
pattern near the beginning of the trench is observed for the non-hydrostatic model
(Figure 10(b)) compared to the hydrostatic model (Figure 10(a)).
Figure 11 shows the computed and experimentally observed horizontal velocity (u), TKE

(k), and shear stress (�xz), indicating that the overall agreement is excellent in both models,
although numerical results from the non-hydrostatic model are slightly more accurate than
those from the hydrostatic model. Compared with other standard k–� models [9, 30] the current
model accurately predicts u, k, and �xz, especially at location 2 where weak circulation occurs
leading to negative velocities near the bottom.
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Figure 10. Cross-section through centre line at y=0:25m of numerical solution streamlines, for the
trench channel �ow test case: (a) hydrostatic pressure model; and (b) non-hydrostatic pressure model.

Figure 11. Cross-section through centre line at y=0:25m of u (m=s), k (m2=s2), and �xz (N=s2), as
computed (hydrostatic pressure model: −−, non-hydrostatic pressure model: —) and experimentally
observed (◦) [29], for the trench channel �ow test case: (a) u (m=s); (b) k (m2=s2); and (c) �xz (N=m2).
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Figure 12. Cross-section through centre line at y=0:25m of shear velocities (m=s) as computed (hydro-
static pressure model: −−, non-hydrostatic pressure model: —) and experimentally observed (◦) [29],

for the trench channel �ow test case.

Figure 13. Cross-section through the horizontal plane, with measurement sections and grid distribution,
of the meandering channel test case geometry with channel width of 2:34m.

In Figure 12, the shear velocities along the bottom, u∗, computed from both models
using (31), are compared with experimental data [29]. Better experimental agreement is again
achieved using the non-hydrostatic model compared to the hydrostatic model. However, the
results of both numerical models indicate better accuracy than results from the rigid lid com-
putations of Alfrink and van Rijn [30].

4.4. Meandering channel �ow

The meandering channel �ow problem has been examined experimentally by Chang [31], and
numerically using a rigid lid approximation [32] and a free surface condition [33]. We have
simulated this problem using the computational grid shown in Figure 13, where a variable
grid has been used in the longitudinal direction, a constant grid, using 0:078m intervals, in the
transverse direction, and a variable grid, using (35) with �1 = 0:5 and �2 = 1:1, in the vertical
direction; this gives a total of 116× 30× 20 nodes. Figure 13 also shows the locations of
the measurement sections presented in Reference [31]. The in�ow boundary conditions used
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Figure 14. Vertical cross-sections, through selected sections, of transverse velocities v=Uo, as com-
puted (hydrostatic model: −−, non-hydrostatic model: —) and experimentally observed (◦, [31]), for

the meandering channel test case with channel width of B=2:34m.

are: U =Uo=0:355m=s [32], and V =W =0m=s. The water surface elevation is speci�ed at
the out�ow boundary as H =0:115m. The smooth wall boundary condition (31) is applied
along the bottom and side walls. In this test, a time increment of ��=0:02 s is used, and
steady state solutions are considered after 100 s (when residuals indicated steady state had
been reached).
In Figure 14, transverse velocities v=Uo computed from the hydrostatic and non-hydrostatic

models are compared with experimental data [31] at sections 1, 5, 9, and 13. At the exit of the
�rst bend (section 1), strong currents from the inner to the outer bank near the water surface
are observed and computed; these currents are compensated by inverse directional �ows near
the bottom. At the end of the middle straight channel (section 5), no circulation is observed
or computed. Secondary currents, similar in magnitude but in a di�erent direction to those
observed and computed at section 1, are observed and computed at section 9. Based on the
measured data, there is reverse circulation near the surface at the inner bank of section 13
and the outer bank of section 1. However, the present numerical models fail to predict this
small motion. As mentioned in Reference [33], this inaccuracy may be improved by using a
more complicated turbulence model.
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In general, overall predictions using the non-hydrostatic model are in greater agreement with
the experimental data than those using the rigid lid model [32]. The predictions of the non-
hydrostatic model are an improvement on those of the hydrostatic model. However, solutions
computed using the hydrostatic model do not agree well with the experimental data in this
test case, unlike the trench channel �ow test case of Section 4.3. This suggests that numerical
models without non-hydrostatic pressure may not predict vertical variations of �ow variables
accurately.

5. CONCLUSION

In this paper, a 3-D numerical model with and without the hydrostatic approximation is
presented using a generalized coordinate system. Time integration is performed by two frac-
tional steps. In the hydrostatic fractional step, the intermediate velocity �eld is solved using
a Newton–GMRES method. By considering the non-hydrostatic pressure and the continu-
ity equation, the intermediate velocities are updated to the divergence-free velocities in the
non-hydrostatic step. In this second step, the pressure–Poisson equation is solved using the
GMRES method with SGS preconditioning. It has been shown that a multi-dimensional
velocity interpolation method can prevent oscillating pressure �elds that may result from
the use of linear or third-order single-dimensional interpolation methods. The newly devel-
oped model has been tested using four test cases and compared with analytical solutions,
published results, and experimental data. It is shown in calculations without turbulence that
the hydrostatic approximation is valid only in certain cases where wave length is relatively
long. In test cases involving turbulence, both models can predict mean �ow variables quite
accurately. However, it is found that the di�erences in the numerical solutions of the hydro-
static and non-hydrostatic models are noticeable for the meandering channel test case, where
complicated vertical motions are observed.

APPENDIX A

The pressure–Poisson equation, obtained by substituting (26) into (6) leads to

(�1q� + �2q� + �3q�)� + (�4q� + �5q� + �6q�)�

+(�7q� + �8q� + �9q�)�=
�
��

⎡
⎣( Ũ

J

)
�

+

(
Ṽ
J

)
�

+

(
W̃
J

)
�

⎤
⎦ (A1)

where

�1 = (�2x + �
2
y + �

2
z)=J; �2 = (�x�x + �y�y + �z�z)=J; �3 = (�x�x + �y�y + �z�z)=J

�4 = (�x�x + �y�y + �z�z)=J; �5 = (�2x + �
2
y + �

2
z)=J; �6 = (�x�x + �y�y + �z�z)=J

�7 = (�x�x + �y�y + �z�z)=J; �8 = (�x�x + �y�y + �z�z)=J; �9 = (�2x + �
2
y + �

2
z )=J
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When (15) is used for the second-order derivatives of the non-hydrostatic pressure, it yields
the linear system of equations

�1qi−1; j−1; k + �2qi−1; j; k−1 + �3qi−1; j; k + �4qi−1; j; k+1 + �5qi−1; j+1; k

+�6qi; j−1; k−1 + �7qi; j−1; k + �8qi; j−1; k+1 + �9qi; j; k−1 + �10qi; j; k

+�11qi; j; k+1 + �12qi; j+1; k−1 + �13qi; j+1; k + �14qi; j+1; k+1 + �15qi+1; j−1; k

+�16qi+1; j; k−1 + �17qi+1; j; k + �18qi+1; j; k+1 + �19qi+1; j+1; k =RHS of (A1) (A2)

where the coe�cients are:

�1 =
1

4����
[(�2)i−1=2; j; k + (�4)i; j−1=2; k]; �2 =

1
4����

[(�3)i−1=2; j; k + (�7)i; j; k−1=2]

�4 =− 1
4����

[(�3)i−1=2; j; k + (�7)i; j; k+1=2]; �5 = − 1
4����

[(�2)i−1=2; j; k + (�4)i; j+1=2; k]

�6 =
1

4����
[(�6)i; j−1=2; k + (�8)i; j; k−1=2]; �8 = − 1

4����
[(�6)i; j−1=2; k + (�8)i; j; k+1=2]

�12 =− 1
4����

[(�6)i; j+1=2; k + (�8)i; j; k−1=2]; �14 =
1

4����
[(�6)i; j+1=2; k + (�8)i; j; k+1=2]

�15 =− 1
4����

[(�2)i+1=2; j; k + (�4)i; j−1=2; k]; �16 = − 1
4����

[(�3)i+1=2; j; k + (�7)i; j; k−1=2]

�18 =
1

4����
[(�3)i+1=2; j; k + (�7)i; j; k+1=2]; �19 =

1
4����

[(�2)i+1=2; j; k + (�4)i; j+1=2; k]

�3 =
(�1)i−1=2; j; k
��2

+
1

4����
[(�4)i; j−1=2; k − (�4)i; j+1=2; k]

+
1

4����
[(�7)i; j; k−1=2 − (�7)i; j; k+1=2]

�7 =
1

4����
[(�2)i−1=2; j; k − (�2)i+1=2; j; k] + (�5)i; j−1=2; k��2

+
1

4����
[(�8)i; j; k−1=2 − (�8)i; j; k+1=2]

�9 =
1

4����
[(�3)i−1=2; j; k − (�3)i+1=2; j; k] + 1

4����
[(�6)i; j−1=2; k − (�6)i; j+1=2; k]

+
(�9)i; j; k−1=2
��2

�10 =− 1
��2

[(�1)i+1=2; j; k + (�1)i−1=2; j; k]− 1
��2

[(�5)i; j+1=2; k + (�5)i; j−1=2; k]
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− 1
��2

[(�9)i; j; k+1=2 + (�9)i; j; k−1=2]

�11 =
1

4����
[(�3)i+1=2; j; k − (�3)i−1=2; j; k] + 1

4����
[(�6)i; j+1=2; k − (�6)i; j−1=2; k]

+
(�9)i; j; k+1=2
��2

�13 =
1

4����
[(�2)i+1=2; j; k − (�2)i−1=2; j; k] + (�5)i; j+1=2; k��2

+
1

4����
[(�8)i; j; k+1=2 − (�8)i; j; k−1=2]

and

�17 =
(�1)i+1=2; j; k
��2

+
1

4����
[(�4)i; j+1=2; k − (�4)i; j−1=2; k]

+
1

4����
[(�7)i; j; k+1=2 − (�7)i; j; k−1=2]
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